3.2.11 \(\int \sin ^2(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\) [111]

3.2.11.1 Optimal result
3.2.11.2 Mathematica [C] (verified)
3.2.11.3 Rubi [A] (verified)
3.2.11.4 Maple [B] (verified)
3.2.11.5 Fricas [B] (verification not implemented)
3.2.11.6 Sympy [F]
3.2.11.7 Maxima [F]
3.2.11.8 Giac [F]
3.2.11.9 Mupad [F(-1)]

3.2.11.1 Optimal result

Integrand size = 25, antiderivative size = 165 \[ \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {(a-4 b) \sqrt {a-b} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {(3 a-4 b) \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}-\frac {\cos (e+f x) \sin (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 f} \]

output
1/2*(a-4*b)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))*(a-b)^ 
(1/2)/f+1/2*(3*a-4*b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2)) 
*b^(1/2)/f+b*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f-1/2*cos(f*x+e)*sin(f*x+ 
e)*(a+b*tan(f*x+e)^2)^(3/2)/f
 
3.2.11.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 6.15 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.96 \[ \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=-\frac {\sec ^2(e+f x) \left (-4 \sqrt {2} a (a-2 b) \cot (e+f x) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )+4 \sqrt {2} a (a-4 b) \cot (e+f x) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticPi}\left (-\frac {b}{a-b},\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )+\left (3 a^2-6 a b-5 b^2+4 (a-b)^2 \cos (2 (e+f x))+(a-b)^2 \cos (4 (e+f x))\right ) \csc (e+f x) \sec (e+f x)\right ) \sin (2 (e+f x)) \tan (e+f x)}{16 \sqrt {2} f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)}} \]

input
Integrate[Sin[e + f*x]^2*(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
-1/16*(Sec[e + f*x]^2*(-4*Sqrt[2]*a*(a - 2*b)*Cot[e + f*x]*Sqrt[((a + b + 
(a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*EllipticF[ArcSin[Sqrt[((a + b 
 + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1] + 4*Sqrt[2]*a 
*(a - 4*b)*Cot[e + f*x]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f 
*x]^2)/b]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e 
+ f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1] + (3*a^2 - 6*a*b - 5*b^2 + 4*(a - 
 b)^2*Cos[2*(e + f*x)] + (a - b)^2*Cos[4*(e + f*x)])*Csc[e + f*x]*Sec[e + 
f*x])*Sin[2*(e + f*x)]*Tan[e + f*x])/(Sqrt[2]*f*Sqrt[(a + b + (a - b)*Cos[ 
2*(e + f*x)])*Sec[e + f*x]^2])
 
3.2.11.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.99, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4146, 369, 403, 27, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (e+f x)^2 \left (a+b \tan (e+f x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4146

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x) \left (b \tan ^2(e+f x)+a\right )^{3/2}}{\left (\tan ^2(e+f x)+1\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\frac {1}{2} \int \frac {\sqrt {b \tan ^2(e+f x)+a} \left (4 b \tan ^2(e+f x)+a\right )}{\tan ^2(e+f x)+1}d\tan (e+f x)-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 403

\(\displaystyle \frac {\frac {1}{2} \left (\frac {1}{2} \int \frac {2 \left ((3 a-4 b) b \tan ^2(e+f x)+a (a-2 b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{2} \left (\int \frac {(3 a-4 b) b \tan ^2(e+f x)+a (a-2 b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{2} \left (b (3 a-4 b) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+(a-4 b) (a-b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{2} \left ((a-4 b) (a-b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+b (3 a-4 b) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left ((a-4 b) (a-b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+\sqrt {b} (3 a-4 b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{2} \left ((a-4 b) (a-b) \int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}+\sqrt {b} (3 a-4 b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} \left ((a-4 b) \sqrt {a-b} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )+\sqrt {b} (3 a-4 b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

input
Int[Sin[e + f*x]^2*(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(-1/2*(Tan[e + f*x]*(a + b*Tan[e + f*x]^2)^(3/2))/(1 + Tan[e + f*x]^2) + ( 
(a - 4*b)*Sqrt[a - b]*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + 
 f*x]^2]] + (3*a - 4*b)*Sqrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b* 
Tan[e + f*x]^2]] + 2*b*Tan[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/2)/f
 

3.2.11.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 403
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[f*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b*(2*(p + 
 q + 1) + 1))), x] + Simp[1/(b*(2*(p + q + 1) + 1))   Int[(a + b*x^2)^p*(c 
+ d*x^2)^(q - 1)*Simp[c*(b*e - a*f + b*e*2*(p + q + 1)) + (d*(b*e - a*f) + 
f*2*q*(b*c - a*d) + b*d*e*2*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, p}, x] && GtQ[q, 0] && NeQ[2*(p + q + 1) + 1, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4146
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[c*(ff^(m + 1)/f)   Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)^(m/ 
2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x 
] && IntegerQ[m/2]
 
3.2.11.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(823\) vs. \(2(143)=286\).

Time = 6.08 (sec) , antiderivative size = 824, normalized size of antiderivative = 4.99

method result size
default \(\text {Expression too large to display}\) \(824\)

input
int(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2/f/(a-b)^(1/2)/b^(1/2)*(a+b*tan(f*x+e)^2)^(3/2)/(cos(f*x+e)+1)/(a*cos(f 
*x+e)^2-b*cos(f*x+e)^2+b)/((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1 
)^2)^(1/2)*(b^(3/2)*(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f* 
x+e)+1)^2)^(1/2)*cos(f*x+e)^4*sin(f*x+e)-b^(1/2)*(a-b)^(1/2)*((a*cos(f*x+e 
)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*a*cos(f*x+e)^4*sin(f*x+e)+b^ 
(3/2)*(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/ 
2)*cos(f*x+e)^3*sin(f*x+e)-4*b^(5/2)*arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2 
+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*cos(f*x+ 
e)^3-b^(1/2)*(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1) 
^2)^(1/2)*a*cos(f*x+e)^3*sin(f*x+e)+b^(3/2)*(a-b)^(1/2)*((a*cos(f*x+e)^2-b 
*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^2*sin(f*x+e)+5*b^(3/2) 
*arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^( 
1/2)*(cot(f*x+e)+csc(f*x+e)))*cos(f*x+e)^3*a+b^(3/2)*(a-b)^(1/2)*((a*cos(f 
*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)*sin(f*x+e)+3* 
(a-b)^(1/2)*arctanh(1/b^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e) 
+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*cos(f*x+e)^3*a*b-4*(a-b)^(1/2)*arcta 
nh(1/b^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot 
(f*x+e)+csc(f*x+e)))*cos(f*x+e)^3*b^2-b^(1/2)*arctan(1/(a-b)^(1/2)*((a*cos 
(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e))) 
*cos(f*x+e)^3*a^2)
 
3.2.11.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 389 vs. \(2 (143) = 286\).

Time = 4.32 (sec) , antiderivative size = 1931, normalized size of antiderivative = 11.70 \[ \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\text {Too large to display} \]

input
integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[-1/16*((a - 4*b)*sqrt(-a + b)*cos(f*x + e)*log(128*(a^4 - 4*a^3*b + 6*a^2 
*b^2 - 4*a*b^3 + b^4)*cos(f*x + e)^8 - 256*(a^4 - 5*a^3*b + 9*a^2*b^2 - 7* 
a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^4 - 34*a^3*b + 77*a^2*b^2 - 72*a*b 
^3 + 24*b^4)*cos(f*x + e)^4 + a^4 - 32*a^3*b + 160*a^2*b^2 - 256*a*b^3 + 1 
28*b^4 - 32*(a^4 - 11*a^3*b + 34*a^2*b^2 - 40*a*b^3 + 16*b^4)*cos(f*x + e) 
^2 + 8*(16*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^7 - 24*(a^3 - 4*a^ 
2*b + 5*a*b^2 - 2*b^3)*cos(f*x + e)^5 + 2*(5*a^3 - 29*a^2*b + 48*a*b^2 - 2 
4*b^3)*cos(f*x + e)^3 - (a^3 - 10*a^2*b + 24*a*b^2 - 16*b^3)*cos(f*x + e)) 
*sqrt(-a + b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + 
e)) + 2*(3*a - 4*b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 8*a*b + 8*b^2)*cos(f* 
x + e)^4 + 8*(a*b - 2*b^2)*cos(f*x + e)^2 - 4*((a - 2*b)*cos(f*x + e)^3 + 
2*b*cos(f*x + e))*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2 
)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 8*((a - b)*cos(f*x + e)^2 - b)*s 
qrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(f*cos(f*x 
+ e)), -1/16*(4*(3*a - 4*b)*sqrt(-b)*arctan(1/2*((a - 2*b)*cos(f*x + e)^3 
+ 2*b*cos(f*x + e))*sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e 
)^2)/(((a*b - b^2)*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) + (a 
- 4*b)*sqrt(-a + b)*cos(f*x + e)*log(128*(a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a* 
b^3 + b^4)*cos(f*x + e)^8 - 256*(a^4 - 5*a^3*b + 9*a^2*b^2 - 7*a*b^3 + 2*b 
^4)*cos(f*x + e)^6 + 32*(5*a^4 - 34*a^3*b + 77*a^2*b^2 - 72*a*b^3 + 24*...
 
3.2.11.6 Sympy [F]

\[ \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \sin ^{2}{\left (e + f x \right )}\, dx \]

input
integrate(sin(f*x+e)**2*(a+b*tan(f*x+e)**2)**(3/2),x)
 
output
Integral((a + b*tan(e + f*x)**2)**(3/2)*sin(e + f*x)**2, x)
 
3.2.11.7 Maxima [F]

\[ \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sin \left (f x + e\right )^{2} \,d x } \]

input
integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*tan(f*x + e)^2 + a)^(3/2)*sin(f*x + e)^2, x)
 
3.2.11.8 Giac [F]

\[ \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sin \left (f x + e\right )^{2} \,d x } \]

input
integrate(sin(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
integrate((b*tan(f*x + e)^2 + a)^(3/2)*sin(f*x + e)^2, x)
 
3.2.11.9 Mupad [F(-1)]

Timed out. \[ \int \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int {\sin \left (e+f\,x\right )}^2\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

input
int(sin(e + f*x)^2*(a + b*tan(e + f*x)^2)^(3/2),x)
 
output
int(sin(e + f*x)^2*(a + b*tan(e + f*x)^2)^(3/2), x)